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Abstract. We propose a direct method of detection of the nuclear anapole moment. It is based on the
existence of a linear Stark shift for alkali atoms in their ground state perturbed by a quadrupolar interaction
of uniaxial symmetry around a direction n̂ and a magnetic field. This shift is characterized by the T -even
pseudoscalar (n̂ ·B)(n̂∧E ·B)/B2. It involves on the one hand the anisotropy of the hyperfine interaction
induced by the quadrupolar interaction and, on the other, the static electric dipole moment arising from
electroweak interactions inside the nucleus. The case of ground state Cs atoms trapped in a uniaxial (hcp)
phase of solid 4He is examined. From an explicit evaluation of both the hyperfine structure anisotropy and
the static dipole deduced from recent empirical data about the Cs nuclear anapole moment, we predict
the Stark shift. It is three times the experimental upper bound to be set on the T -odd Stark shift of free
Cs atoms in order to improve the present limit on the electron EDM.

PACS. 11.30.Er Charge conjugation, parity, time reversal, and other discrete symmetries – 21.90.+f Other
topics in nuclear structure – 67.80.Mg Defects, impurities, and diffusion – 31.15.Ct Semi-empirical and
empirical calculations (differential overlap, Hückel, PPP methods, etc.)

Introduction

It has been well demonstrated that parity violation in
atomic transitions can be used to test electroweak theory
[1]. In this way, the standard model has been confirmed
convincingly in the domain of low energies. At present,
refinements in experiments and theory allow more pre-
cise measurements to look for a breakdown of the stan-
dard model predictions and hence, new physics [2–5]. The
essential parameter extracted from atomic parity viola-
tion (PV) measurements is the weak nuclear charge QW .
This electroweak parameter appears in the definition of
the dominant electron-nucleus PV potential induced by a
Z0 exchange:

V (1)
pv (r) = (GF /

√
2)(QW /2)γ5PV (r), (1)

where the Z0 couples to the nucleus as a vector particle,
just as the photon does in the Coulomb interaction. In this
Z0 exchange,QW plays the same role as the electric charge
in the Coulomb interaction. γ5 is the Dirac matrix which
reduces to the electron helicity, σ · p/mec, in the non-
relativistic limit (σ and p being respectively the electron
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spin and momentum). The distribution PV (r) normalized
to unity represents the weak charge distribution inside the
nucleus. The physical quantity measured in atomic PV ex-
periments is a transition electric dipole moment, Epv

1 be-
tween states with the same parity, like the nS1/2 → n′S1/2

transitions. In particular the 6S1/2 → 7S1/2 transition
in cesium has been the subject of several experiments,
the accuracy of which has been steadily increasing with
time [6–10].

On top of this the PV electron-nucleus interaction in-
volves also a nuclear spin-dependent contribution which
can provide valuable and original information regarding
nuclear physics. It is generated by an interaction of the
current-current type with a vector coupling for the elec-
tron and an axial coupling for the nucleus. The associated
PV potential V (2)

pv is given by the following expression:

V (2)
pv = (GF /

√
2)(AW /(2I))α · IPA(r), (2)

where α is the Dirac matrix associated with the electron
velocity operator, I the nuclear spin and PA(r) a nuclear
spin distribution normalized to unity. The weak axial mo-
ment of the nucleus, AW , receives several contributions.
The most obvious one comes from the weak neutral vec-
tor boson Z0 with axial coupling to the nucleons. However,
in the standard electroweak model the coupling constants
involved nearly cancel accidentally. As first pointed out
by Flambaum et al. [11], a sizeable contribution to AW
is induced by the contamination of the atom by the PV
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Fig. 1. Simplified representation of the nuclear helimagnetism
(figure adapted from Bouchiat [13]). The normal spin magne-
tizationMS(r) is assumed to be a constant vector parallel to
the nuclear spin, distributed uniformely inside a sphere. Under
the influence of PV nuclear forces, the nuclear magnetization
distribution inside the nucleus acquires a chiral parity non-
conserving componentMpnc(r), obtained by rotatingMS(r)
through the very small angle β(r) around r. Three chiral mag-
netization lines in the equatorial plane are shown. The verti-
cal normal magnetization is actually larger than Mpnc(r) by
about six orders of magnitude. It can be shown [13] that the
vertical anapole moment is given, within a constant, by the
magnetic moment obtained by identifying the chiral magneti-
zation lines with lines of electric currents.

interactions between the nucleons which take place inside
the nucleus. The concept relevant to describe this inter-
action is the nuclear anapole moment [12]. In fact the
interaction can be interpreted simply in terms of a chiral
contribution to the nuclear spin magnetization [13,14], as
illustrated in Figure 1. In other words, one can say that
the PV nuclear forces inside any stable nucleus are re-
sponsible for the nuclear anapole moment or equivalently
a nuclear helimagnetism. The present paper addresses the
problem of how to detect directly this unique static nuclear
property characteristic of parity violation in stable nuclei.

Up to now there has been only one experimental
demonstration of the nuclear anapole moment, namely
that obtained very recently by the Boulder group [10].
In their experiment which gives a high precision determi-
nation of parity violation in the atomic 6S1/2 → 7S1/2

Cs transition, this effect appears as a small relative dif-
ference, actually ∼ 5%, between the Epv

1 transition dipole
amplitudes measured on two different hyperfine lines be-
longing to that same transition. In this case the dominant
source of P without T violation comes from the electron-
nucleon Z0 exchange associated with the weak charge QW

of the nucleus. This makes the extraction of the nuclear
spin-dependent part a most delicate matter. In view of
the importance of this result for the determination of the
PV pion-nucleon coupling constant, f1

π (see [15]), a totally
independent determination is highly desirable.

It is well-known that T reversal invariance forbids
the manifestation of V (1)

pv in an atomic stationary state.
However, we shall show in the following sections that in
such a state T reversal invariance does not forbid the
manifestation of V (2)

pv , hence that of the nuclear helimag-
netism. For a free atom, the rotation symmetry of the
Hamiltonian leads to an exact cancellation of the diagonal
matrix elements. This property still holds true if the ro-
tation symmetry is broken by the application of static
uniform electric and magnetic fields. However, if the sym-
metry is broken by the application of a static potential of
quadrupolar symmetry, for instance by trapping the atoms
inside a crystal of hexagonal symmetry, then, the station-
ary atomic states are endowed with a permanent electric
dipole moment which can give rise to a linear Stark shift.
This offers a novel possibility of detecting the nuclear he-
limagnetism having a twofold advantage:

(i) in a stationary state it is the sole cause of P without
T violation;

(ii) it manifests itself by a modification of the atomic tran-
sition frequencies in an applied electric field, i.e. a lin-
ear Stark shift, providing for the first time an oppor-
tunity for demonstrating the static character of this
unusual nuclear property.

There exist in the literature other proposals for a direct
detection in atoms of the nuclear spin-dependent effect,
i.e. without any participation from V

(1)
pv .

(i) One is based on the difference between the selection
rules of the potentials V (1)

pv and V (2)
pv . While the former acts

as a scalar in the total angular momentum space and mixes
only states of identical angular momentum (and opposite
parity), the latter acts like a vector and mixes states of
different total angular momentum. Consequently, one can
find atomic transitions between states of the same parity
which are allowed for the nuclear spin dependent contribu-
tion but remain forbidden for the nuclear spin independent
one [16]. One such example is the (6p2)3P0 → (6p2)1S0

lead transition at 339.4 nm, strictly forbidden for even
isotopes, which acquires a non-vanishing matrix element
Epv

1 in odd isotopes owing to the PV interaction involving
the nuclear spin, which mixes the (6p2)1S0 state to the
(6p7s)3P1 state of opposite parity [16]. Another possible
example is the 1S0 → 3D2 transition (404 nm) in Yb [17].

(ii) A second approach, suggested also long ago [18]
and invoked by several groups in the past is now under
serious consideration [19]. It consists in the detection of
an Epv

1 amplitude via a right-left asymmetry appearing in
hfs transition probabilities for the ground state of a potas-
sium isotope, in the presence of a strong magnetic field
(magnetic and hyperfine splittings of comparable magni-
tude). 41K is selected because of its small nuclear magnetic
moment.
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(iii) There is also the possibility of detecting the
energy difference in the NMR spectrum of enantiomer
molecules [20].

In view of the extreme difficulty of these other projects,
we believe that, over and above its intrinsic scientific inter-
est, the linear Stark shift discussed in this paper deserves
careful consideration.

The first section of this paper recalls the main angu-
lar momentum properties of the permanent nuclear spin-
dependent PV electric dipole operator arising from the
nuclear anapole moment. In addition we compute its mag-
nitude for the cesium atom using recent empirical data
relative to the Cs 6S → 7S transition. The next section
(Sect. 2) shows that this dipole can manifest itself via a
linear Stark shift only if the free atom symmetry is bro-
ken. After this we consider the case where the atom is
perturbed by a crystal field of uniaxial symmetry. Here,
the crystal axis n, and the applied electric and magnetic
fields create a chiral environment permitting the existence
of a linear Stark shift, the explicit expression for which is
given. In Section 3, we examine a realistic experimental
situation where its observation looks reasonably feasible:
this deals with Cs atoms trapped inside a 4He crystal ma-
trix of hexagonal symmetry. We have investigated quanti-
tatively how, by breaking the atomic symmetry, the ma-
trix induced perturbation manages to generate a linear
Stark shift. Moreover, we evaluate both the matrix in-
duced anisotropy and the shift. The details of the nec-
essary calculation based on a semi-empirical method are
given in the Appendix. In the final section we suggest an-
other experimental approach in which the atoms are no
longer submitted to a crystal field, but are instead per-
turbed by an intense nonresonant radiation field.

1 The permanent nuclear spin-dependent PV
electric dipole

1.1 Symmetry considerations

The space-time symmetry properties of the atomic electric
dipole induced by the nuclear spin dependent PV interac-
tion have been presented before in many review papers
(see for instance [21]). We recall them here for complete-
ness, since they constitute the starting point of the linear
Stark shift calculation developed in the present paper.

First, we wish to stress that the existence of the
anapole moment interaction not only implies the existence
of a transition dipole proportional to the nuclear spin, but
also that of an electric dipole operator having diagonal
matrix elements between stationary atomic states. This
electric dipole is found to be proportional to the operator
s ∧ I. Therefore it does not undergo the same transfor-
mation under P as does an ordinary dipole, since it is a
pseudovector instead of a vector. We also note that it is
even under T -reversal, so that the quantity (s∧ I) ·E, as-
sociated with a linear Stark shift, violates P , but does not
violate T invariance.

It is convenient to define dpv(n′, n) as the effective
pv electric dipole moment operator acting in the tensor

product ES
⊗
EI of the electronic and nuclear angular mo-

mentum spaces, which describes the transition between
two S1/2 subspaces corresponding to given radial quan-
tum numbers n and n′. This effective dipole operator in-
cludes both contributions from potentials V (1)

pv and V
(2)
pv .

Rotation invariance together with the fact that V (2)
pv is lin-

ear in I implies that dpv(n′, n) can be written under the
following general form:

dpv(n, n′) =− i ImE(1)
1pv(n, n′) σ

+ i a(n, n′)I + b(n, n′)s ∧ I, (3)

where the real quantities a(n, n′) and b(n, n′) parameterize
the contribution of the nuclear spin-dependent PV poten-
tial. Time reversal invariance of V (1)

pv and V (2)
pv implies the

following relations under the exchange n↔ n′:

ImE(1)
1pv(n, n′) = −ImE(1)

1pv(n′, n),

a(n, n′) = −a(n′, n),
b(n, n′) = b(n′, n). (4)

The effective PV static dipole moment Dpv = dpv(6, 6)
relative to the ground state is then given by:

Dpv = b(6, 6)s ∧ I = dIs ∧ I. (5)

If we introduce the total angular momentum F = s + I,
using simple relations of angular momentum algebra, one
can derive the useful identity:

s ∧ I ≡ [F2 ,
−i
2

s]. (6)

It then becomes obvious that, in low magnetic fields and
without external perturbation, the dipole operator Dpv

has no diagonal matrix elements between atomic eigen-
states. In fact, as demonstrated in the next section of this
paper, a manifestation of this dipole requires special con-
ditions for breaking the free-atom rotational symmetry.

1.2 Magnitude of the permanent dipole

The magnitude, dI , of the permanent dipole will play a
decisive role in the assessment of the feasibility of an ex-
periment. We are now going to perform the evaluation of
dI in the interesting case of cesium. We proceed in two
steps: first we compute directly b(6, 7) from experimental
data, then we give a theoretical evaluation of the ratio
b(6, 6)/b(6, 7). It is convenient to use the notations of ref-
erences [7,13] and to rewrite dpv(6, 7) as:

dpv(6, 7) = −i ImEpv
1 (6, 7)

(
σ + η

I
I

+ i η′σ ∧ I
I

)
· (7)

The nuclear spin dependent potential V (2)
pv induces a spe-

cific dependence of the PV transition dipole on the initial
and final hyperfine quantum numbers, F and F ′. In order
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to isolate the V (2)
pv contribution, we are led, following ref-

erence [7], to the introduction of the reduced amplitudes
dFF ′ :

dFF ′(η, η′) =
〈7S, F ′M ′|dpv|6S, FM〉
〈F ′M ′|σ|FM〉 · (8)

The amplitudes dFF ′(η, η′) are tabulated in Table XXII
of reference [7] and reduce to −i ImEpv

1 (6, 7) for vanishing
η and η′. The quantity of interest here is the ratio rhf =
d43/d34 which is given, to second order in η and η′, by:

rhf ' 1− 2I + 1
I

η′. (9)

Using the empirical value for the ratio rhf given by the
last Boulder experiment [10]: rhf − 1 = (4.9± 0.7)× 10−2,
we obtain:

η′ = − 7
16

(rhf − 1) = (−2.1± 0.3)× 10−2. (10)

We deduce b(6, 7) by a simple identification:

b(6, 7) = ImEpv
1 (6, 7)

2
I
η′ = (1.04± 0.15)× 10−13|e|a0,

(11)

where we have used for ImEpv
1 (6, 7) the empirical value

obtained in reference [10]:

ImEpv
1 (6, 7) = (−0.837± 0.003)× 10−11|e|a0.

To compute the ratio b(6, 6)/b(6, 7), we are going to use
an approximate relation, derived in reference [13], which
relates the potential V (2)

pv to V (1)
pv :

V (2)
pv (r) = KA

AW
QW

2j · I
I
V (1)

pv (r). (12)

Here KA is a constant very close to unity which depends
weakly upon the shape of the nuclear distributions PV (r)
and PA(r); j is the single electron angular momentum and
since, as we shall see, only single particle states with j =
1/2 are involved, we can write hereafter 2j = σ.

This relation, valid for high Z atoms like ce-
sium, hinges upon the fact that the matrix elements
〈n′p3/2|V (2)

pv |ns1/2〉 involving p3/2 states are much smaller
– by a factor 2 × 10−3 – than those which involve p1/2

states, 〈n′p1/2|V (2)
pv |ns1/2〉. This is easily verified in the

one-particle approximation since the radial wave func-
tions at the surface of the nucleus are very close to Dirac
Coulomb wave functions for an unscreened charge Z. It is
argued in reference [13] that this property remains true,
to the level of few %, when V (2)

pv (r) is replaced by the non
local potential U (2)

pv (r, r′), which describes the core polar-
ization effects within the RPA approximation1.

1 To check the validity of the relation (12) we have compared
the values for η and η′ obtained in this way with those deduced
from a direct computation [22] of dpv(6, 7). The two results
agree to better than 10%.

The contributions of V (i)
pv to the effective dipole oper-

ator dpv(n, n′) are given as the sum of the two operators:

A(i) = P (n′S1/2)V (i)
pv G(En′)dP (nS1/2),

B(i) = P (n′S1/2)dG(En)V (i)
pv P (nS1/2), (13)

where G(En) = (En−Hatom)−1 is the Green function op-
erator relative to the atomic Hamiltonian; d is the electric
dipole operator, P (nS1/2) and P (n′S1/2) stand for the pro-
jectors upon the subspaces associated with the configura-
tions nS1/2 and n′S1/2; En and En′ are the corresponding
binding energies. It follows immediately from the Wigner-
Eckart theorem that the operators A(1) and B(1) can be
written as:

A(1) = ih(n, n′)σ; B(1) = i k(n, n′)σ. (14)

Using now the relation given in equation (12) and the
commutation of σ · I with the pseudoscalar V (1)

pv , one gets
the following expressions for A(2) and B(2):

A(2) = iKA
AW
QW

h(n, n′)
(
σ · I

I

)
σ,

B(2) = iKA
AW
QW

k(n, n′)σ
(
σ · I

I

)
· (15)

We arrive finally at an expression for dpv(n, n′) which can
be used to compute the ratio b(6, 6)/b(6, 7):

dpv(n, n′) = i
(
σ +KA

AW
QW

I
I

)
(h(n, n′) + k(n, n′))

+ σ ∧ I
I
KA

AW
QW

(h(n, n′)− k(n, n′)) . (16)

Time reversal invariance implies h(n, n) = −k(n, n) so
that we can write the sought for ratio b(6, 6)/b(6, 7) as:

b(6, 6)
b(6, 7)

=
2h(6, 6)

h(6, 7)− k(6, 7)
· (17)

The amplitudes h(6, 6), h(6, 7) and k(6, 7) can be com-
puted from the formulas given in equations (13, 14). We
have used the explicit values of the radial matrix elements
(parity mixing and allowed electric dipole amplitudes) for
the intermediate states2 6P1/2−9P1/2 and the energy dif-
ferences involved, which are tabulated in reference [22]
(Tab. IV)3. We obtain in this way:

b(6, 6)/b(6, 7) = 4.152/1.86 = 2.27. (18)

Combining the above result with the value of b(6, 7) given
by equation (11) we obtain the following estimate for dI :

dI ' 2.36× 10−13|e|a0 , (19)

2 We use here the fact that, as noted by several au-
thors, most of the sum (≈ 98%) comes from the four states
6P1/2, 7P1/2, 8P1/2, 9P1/2.

3 Note that a misprint in Table IV of reference [22] has
caused an interchange between the contents of columns 1 and
2 of its lower half (entitled “7S perturbed”).
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believed to be about 15% accurate.
It is of interest to compare dI with the P -odd T -odd

EDM of the Cs atom obtained from a theoretical evalu-
ation using the latest experimental upper bound for the
electron EDM [23]:

|de| ≤ 7.5× 10−19|e|a0.

Using for the cesium anti-screening factor the theoretical
value [24]: 120 ± 10, one gets the following upper bound
for the cesium EDM, namely the experimental sensitivity
to be reached for improving the existing bound on |de|:

|dCsEDM| ≤ 9.0× 10−17|e|a0. (20)

We are going to use equations (5, 19) for calculating the
linear Stark shift. It is interesting to note here that these
equations predict also the magnitude of the PV transition
dipole involved in an eventual Cs project which would be
based on the observation of hyperfine transitions in the
Cs ground state, analogous to the potassium project men-
tioned in the introduction (see also [19]). Therefore both
a project of this kind and the linear Stark shift discussed
here aim at the determination of the same physical pa-
rameter, dI , but only the observation of a dc Stark shift
would prove its static character.

2 The linear Stark shift induced by V(2)
pv

2.1 Need for breaking the rotation symmetry
of the atomic Hamiltonian

The parity conserving spin Hamiltonian in presence of a
static magnetic field B0 is:

Hspin = As · I− gsµBs ·B0 − γII ·B0. (21)

From Section 1.1, we have seen that, to first order in
the electric field, the effect of V (2)

pv in presence of an ap-
plied electric field can be described by the following Stark
Hamiltonian:

Hst
pv = dIs ∧ I ·E ≡ −dI

i
2

[F2, s ·E]. (22)

We have noted that the above identity implies the van-
ishing of the average value of Hst

pv in the low magnetic
field limit. We are going to show that this null result still
remains valid for arbitrary values and orientations of the
magnetic field.

To do this we consider the transformation properties of
both Hspin and Hst

pv under the symmetry Θ, defined as the
product of T reversal by a rotation of π around the unit
vector û = E ∧B0/|EB0|, the rotation R(û, π). It should
be stressed that the rotation R(û, π) and the symmetry Θ
considered here are quantum mechanical transformations
acting only on the spin states. The external fields are con-
sidered as real c-numbers and are not affected4. One sees

4 The combination of T and R was used extensively by
Sandars in a discussion of atomic electric-dipole moments [25].

immediately that Hspin is invariant under the symmetry
Θ = TR(û, π), while Hst

pv changes sign. We conclude that,
in order to suppress the linear Stark shift cancellation we
have to break the Θ symmetry.

This symmetry breaking can be achieved, for instance,
by perturbing the atomic S1/2 state with a crystal field
compatible with uniaxial symmetry along the unit vec-
tor n. A practical realization looks feasible, since it has
been demonstrated that Cs atoms can be trapped in a
solid matrix of helium having an hexagonal symmetry [26]
(see also Sect. 3). In this case the alkali S state is perturbed
by the Hamiltonian5:

Hb(n) = λb

(
e2

2a0

)(
(ρ · n)2 − 1

3
ρ2

)
, (23)

where both λb and ρ = r/a0 are expressed in atomic units.
The perturbed atomic state is now a mixture of S and D
states, with no component of the orbital angular momen-
tum along the n-axis. The spin Hamiltonian is modified
and an anisotropic hyperfine interaction is induced by the
D state admixture. The new spin Hamiltonian reads:

H̃spin = A⊥ s · I + (A‖ −A⊥)(s · n)(I · n)

− gsµBs ·B0 − γII ·B0. (24)

It is easily verified that, if n lies in the (B, û) plane, with
non-zero components along both B and û, this perturbed
atomic Hamiltonian is no longer invariant under the trans-
formation Θ.

Another possible method for breaking the symmetry
of Hspin will be presented in Section 4.

2.2 Strong magnetic field limit (γsB0 � A⊥,A‖)

The anisotropy axis is defined as:

n = cosψ ẑ + sinψ x̂. (25)

Let us consider the nuclear spin Hamiltonian associated
with the restriction of Hspin to the electronic eigenstate
E(ñs,ms) perturbed by the quadrupolar potential Hb(n):

Heff
(ms)

= A⊥msIz+ms(A‖−A⊥)(sinψ cosψIx+cos2 ψIz)

+ γsB0ms − γIB0Iz

= ms

[
γsB0 + Iz

(
A⊥ sin2 ψ +A‖ cos2 ψ − γIB0

ms

)
+ Ix(A‖ −A⊥) sinψ cosψ

]
.

Heff
(ms)

is identical to the Hamiltonian seen by an isolated
nucleus coupled to an effective magnetic field, Beff(ms),

5 It has been shown [26] that in the bubble enclosing the
cesium atom there is a small overlap between the cesium and
the helium orbitals. As a consequence, the axially symmetric
crystal potential inside the bubble can be well approximated
by a regular solution of the Laplace equation.
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having the following components:

Beff
x = −(A‖ −A⊥) sinψ cosψ

ms

γI

Beff
y = 0

Beff
z = B0 − (A⊥ sin2 ψ +A‖ cos2 ψ)

ms

γI
, (26)

or equivalently:

Beff
x = Beff sinα, Beff

y = 0, Beff
z = Beff cosα,

where

tanα =
(A‖ −A⊥) sinψ cosψ ms

−γIB0 + (A⊥ sin2 ψ +A‖ cos 2ψ) ms

·

In other words, the direction ẑeff of Beff can be deduced
from the ẑ-axis by a rotationR(ŷ, α) by an angle α around
the ŷ-axis. Hence, the eigenstates of Heff

(ms)
are |ms m̃I〉,

where m̃I now stands for the z-component of the spin Ĩ
resulting from I through the rotation R(ŷ,−α).

Ĩz = Ĩ · ẑ = I · R(ŷ, α)ẑ = cosα Iz + sinα Ix.

We can now compute the linear Stark shift associated with
the Hamiltonian Hst

pv given by equation (22), supposing
the E-field directed along the ŷ-axis:

∆Est = 〈ms m̃I |dIE szIx|ms m̃I〉
= dIE ms〈m̃I |Ix|m̃I〉
= dIE ms〈mI |I · R(ŷ, α)x̂|mI〉
= −dIE ms mI sinα. (27)

If we suppose γIB0 � A‖, A⊥ � |γs|B0 and |A‖−A⊥| �
A‖ +A⊥, we obtain:

tanα ≈
A‖ −A⊥

(A‖ +A⊥)/2
sinψ cosψ ≈ sinα,

which yields the simplified expression:

∆Est = −dIEmsmI

A‖ −A⊥
A‖ +A⊥

sin 2ψ. (28)

In this approximation, ∆Est can be considered as a mod-
ification of the hyperfine constant linear in the applied
electric field.

In order to show up the transformation properties of
∆Est, it is useful to express this last result in terms of the
two fields, E and B, and the unit vector n̂ which defines
the anisotropy axis:

∆Est = −2dImsmI
(n̂ ·B0)(n̂ ·E ∧B0)

B2
0

A‖ −A⊥
A‖ +A⊥

·

(29)

From this expression, it is clearly apparent that the linear
shift breaks space reflection symmetry but preserves time
reversal invariance. It differs from the P and T violating

B

E

o

n̂

B

E

o

n̂

Fig. 2. Two mirror-image and T -reversal symmetric experi-
mental configurations corresponding to opposite values of the
pseudoscalar (n̂ ·B0)(n̂ · E ∧B0)/B2

0.

linear Stark shift arising from an electron EDM by the
fact that it cancels out when the quadrupolar anisotropy
of the ground state vanishes. It is also obvious from equa-
tion (29) that, in the strong field limit, the size of the
Stark shift depends only on the orientation of B relative
to E and n and not on the strength of the magnetic field.
Figure 2 represents two mirror-image configurations of the
experiment.

2.3 Limit of low magnetic fields and small anisotropy

We now consider the limit |A‖ −A⊥| � γsB0 � A⊥, A‖.
The linear Stark shift can be computed by using second

order perturbation theory. Hspin is perturbed by both Hst
pv

and Hb(n), the latter being responsible for the anisotropy
contribution to Hspin, i.e. (A‖−A⊥)(s ·n̂)(I·n̂). The fields
B0 and E are still taken parallel to ẑ and ŷ respectively.
We find:

∆Est(F,M) = 2(A‖ −A⊥)dIE cosψ sinψ

×
∑

F ′ 6=F,M′

〈FM |szIx + sxIz|F ′M ′〉〈F ′M ′|szIx − sxIz |FM〉
EFM −EF ′M′

·

Since the operator s ∧ I is identical to the commutator
[F2,− i

2s], we see that only the hyperfine states F ′ 6= F
with M ′ = M±1 contribute to the sum. Therefore, in the
energy denominator we can neglect the Zeeman contribu-
tion which is small compared to the hyperfine splitting
and, in the sum, we can factorize out the energy denomi-
nator 2(F−I)A‖(I+ 1

2 ). Since F ′ = F does not contribute,
the resulting sum can be performed using a closure rela-
tion:

∆Est(F,M) =
(A‖ −A⊥)dIE

2(F − I)A‖(I + 1
2 )

sin 2ψ

× 〈FM |(szIx + sxIz)(szIx − sxIz)|FM〉 · (30)

Using standard properties of spin 1/2 matrices, we
can transform the diagonal matrix element above into
1
4 〈FM |(I2

x − I2
z )|FM〉. Once taken into account the axial

symmetry of the unperturbed atomic state, it still simpli-
fies to 1

8 〈FM |(I
2 − 3I2

z )|FM〉.
We arrive at the final expression:

∆Est(F,M) = k(F,M)
A‖ −A⊥
A‖ +A⊥

dIE sin 2ψ, (31)
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Fig. 3. Energies of the different F , M states of the ground configuration of 133Cs showing the linear Stark shift largely
magnified. The two figures correspond to situations realizing opposite signs of the pseudoscalar P defined in the text (left:
P > 0; right: P < 0). Top: F = 4; bottom: F = 3.

Table 1. Linear Stark shift coefficients k(4,M) and k(3,M)
of the different F , M substates of the natural cesium ground
state.

|M | 0 1 2 3 4

k(4, |M |) 15/16 51/64 3/8 −21/64 −21/16

k(3, |M |) −15/16 −45/64 0 75/64

where

k(F,M) = 2(F − I)〈FM |1
2

(I2 − 3I2
z )|FM〉/(2I + 1).

(32)

The Stark shift coefficients k(F,M) for 133
55Cs (I = 7/2)

are listed in Table 1.
We note that ∆Est depends on M2 so the linear Stark

shifts of the Zeeman splittings E(F,M) − E(F,M − 1)
have opposite signs for M > 0 and M < 0 (see Fig. 3):

E(4,M)−E(4,M − 1) =

~ωsM/(2I + 1) +∆Est(4, |M |)−∆Est(4, |M − 1|).

As expected, once again the pseudoscalar

P =
A‖ −A⊥
A‖ +A⊥

(n̂ ·B0)(n̂ ·E ∧B0)
B2

0

, (33)

plays an essential role. If P > 0, there is a contraction of
the Zeeman splittings belonging to the F = 4 hyperfine
state for positive values of M and a dilatation for negative
ones, as shown by Figure 3. The situation is reversed when
the sign of P is changed. In the F = 3 hyperfine state,
splitting contraction also occurs for M > 0 with P > 0
and for M < 0 with P < 0. This behavior could help to
discriminate the linear Stark shift induced by the nuclear
helimagnetism from spurious effects. The largest shift be-
tween two contiguous sublevels is expected to occur for
the couple of states F = 3,M = |3| → F = 3,M = |2|.

From Table 1 and equations (19, 31) we predict:

∆Est(3, 3)−∆Est(3, 2) =
75
64

A‖ −A⊥
A‖ +A⊥

sin 2ψ dIE,

(34)

with (75/64)dI ' 2.76× 10−13|e|a0.
As in the strong field limit, we note that the size of

∆Est depends only on the direction of B.

2.4 Analogy between this shift and the PV energy
shift searched for in enantiomer molecules

We would like to stress that from the point of view of sym-
metry considerations there exists a close analogy between
the linear Stark shift induced by the anapole moment
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and the energy shift which is searched for in enantiomer
molecules [27]. Indeed in the present configuration the
three vectors E, B and n which are non-coplanar are
sufficient to place the atom in a chiral environment sim-
ilar to that experienced by an atomic nucleus inside a
chiral molecule. Between two mirror-image environments
an energy difference is predicted exactly like between two
mirror-image molecules.

3 Experimental considerations and order
of magnitude estimate

We now consider an experimental situation which looks
like a possible candidate for the observation of the linear
Stark shift discussed in the previous sections. It has been
demonstrated experimentally [28] that cesium atoms can
be trapped in solid matrices of 4He. At low pressures, solid
helium crystallizes in an isotropic body-centered cubic
(bcc) phase, but also in a uniaxial hexagonal close packed
(hcp) phase. Optically detected magnetic resonance has
proved to be a sensitive tool for investigating the symme-
try of the trapping sites. The group of Weis has reported
the observation in the hexagonal phase of zero-field mag-
netic resonance spectra and magnetic dipole-forbidden
transitions which they interpret in terms of a quadrupolar
distortion of the atomic bubbles [29]. Particularly relevant
here is their observation of the matrix-induced lifting of
the Zeeman degeneracies in zero field. This is attributed
to the combined effect of two interactions, the quadrupo-
lar interaction of the form Hb(n) = λb

(
(ρ · n)2 − 1

3ρ
2
)

between the cesium atom and the He matrix on the one
hand, and the hyperfine interaction in the Cs atom on the
other.

Provided that F2 is still a good quantum number, it is
easily shown from general symmetry considerations, that
the anisotropy of the hyperfine interaction induced by the
(hcp) crystal potential can be represented, within a given
hyperfine multiplet, by the effective perturbation:

Heff = Ceff(F )
(

(F · n̂)2 − 1
3
F2

)
.

The constants Ceff(F ) can be easily related to the
anisotropic hyperfine constants appearing in the spin
hamiltonian H̃spin introduced in equation (23) of the pre-
vious section:

Ceff(F = I ± 1/2) = ±(A‖ −A⊥)/(2I + 1).

In a uniaxial crystal, when the atoms are optically polar-
ized along the crystal axis in the absence of external mag-
netic fields, the lifting of the degeneracy between Zeeman
sublevels induced by Heff should make it possible to drive
magnetic resonance transitions between these levels. One
would expect to deduce the hyperfine anisotropy from the
observed spectra. At first sight, the zero-field magnetic
resonance spectra observed by Weis et al. would seem to
match this prediction. However, their experiment has been
performed in a polycristalline (hcp) sample. The effects

observed in this situation result from averaging over the
distribution of the microcrystal axes. For each microcrys-
tal, there exists a quantization axis, ẑ, which diagonalizes
the hyperfine level density matrix. Immediately a ques-
tion arises as to the direction of the quantization axis ẑ
with respect to the microcrystal symmetry axis n. If the
population differences resulted, say, from the Boltzmann
factor, then ẑ would be along n, since in the zero mag-
netic field limit there is no other preferred direction. In
such a situation, there would be no difference between the
spectra for a polycrystal and a monocrystal. But in the ex-
perimental situation considered here, the population dif-
ferences are induced by an optical pumping mechanism
which provides a second preferred direction: the direction
of the photon angular momentum along k. The microcrys-
tal density matrix is then expected to keep some memory
of the direction of k. So, two directions n and k compete
in the determination of the quantization axis ẑ. To pro-
ceed further, we consider the extreme case where ẑ is taken
along k, together with an assumed isotropic distribution
of microcrystal axes. It is then easily seen that the lines as-
sociated with the hyperfine anisotropy Heff collapse into
a single asymmetric line when the average is performed
over the polycrystal. Clearly, at least one of the two pre-
ceding assumptions is too drastic, most likely the isotropy
of the n distribution. It is indeed likely that the optical
pumping process is more efficient for microcrystals having
a preferred orientation with respect to the photon angular
momentum. Such a selection mechanism would then lead
to an effective anisotropic distribution of n, and in this
way a spectrum of separated lines can be recovered. From
the above qualitative considerations, it clearly follows that
the final interpretation of the the zero-field resonances re-
quires a detailed analysis of the optical pumping process
for Cs atoms trapped inside deformed bubbles of arbitrary
orientation. The corresponding theoretical investigation is
currently underway in Weis’s group.

Meanwhile, to plan any experiment, we still need to
know about the physical origin and the magnitude of the
ratio (A‖ − A⊥)/(A‖ + A⊥), which governs the magni-
tude of the electroweak linear Stark shift. We are going
to present now the result of an investigation which has
led us both to a physical understanding and a reasonably
accurate estimate of the sought after parameter. We have
chosen to devote an appendix to a detailed description of
our semi-empirical approach, which consists in relating the
hyperfine anisotropy to another measured physical quan-
tity. Here we shall give a brief summary of our procedure
and present the final result.

We start from the remark that there really does exist
a mechanism able to generate an hyperfine anisotropy to
first order in the “bubble” Hamiltonian Hb(n). The nD3/2

state is indeed mixed to the 6S1/2 state under the effect
of Hb(n), and we note then that the hyperfine interac-
tion has non-zero off-diagonal matrix elements between
S1/2 and D3/2 states. In fact, it has been shown previ-
ously [30] that the 〈nS1/2|Hhf |n′D3/2〉 matrix elements
are not easy to calculate, because they are dominated by
the contribution coming from many-body effects, due to



M.A. Bouchiat and C. Bouchiat: An electroweak atomic Stark shift P -odd but not T -odd 13

the existence of an approximate selection rule which sup-
presses the single particle matrix element. However, as we
show in the appendix, the variation of the matrix elements
〈n′S1/2|Hhf |n′′D3/2〉 with respect to the binding energies
En′S1/2 and En′′D3/2 , – expressed in Rydberg – can be rea-
sonably well predicted in the limit |En′S1/2 |, |En′′D3/2 | � 1.
In this way, we are left with a single parameter which
can be deduced from the empirical knowledge of another
physical quantity involving the same matrix elements. We
have in mind the quadrupolar amplitude Ehf

2 induced by
the hyperfine interaction which is present in the cesium
6S→ 7S transition in the absence of a static electric field
[31]. In order to show the relation between the quantities
A‖ − A⊥ and Ehf

2 , we express them explicitly in terms of
the matrix elements M(n′, n) given by:

M(n′, n) =
∑
n′′

〈n′S1/2|Hhf |n′′D3/2〉〈n′′D3/2|ρ2|nS1/2〉
En′S1/2 − En′′D3/2

·

(35)

The basic formula used in our numerical evaluation of
A‖ −A⊥ can be cast in a very compact form:

A‖ −A⊥ = −4λb
∆E

2M(6, 6)
M(7, 6) +M(6, 7)

a3(7, 6) Ry (36)

where ∆E is the energy of the 6S → 7S transition and
a3 ∝ Ehf

2 µB is the empirical quadrupolar amplitude (see
Eq. (A.2) for a precise definition). A second empirical in-
put is used to determine the coupling constant λb: this
is the S–D mixing coefficient which is obtained from the
hyperfine frequency shifts measured by Weis et al. for Cs
atoms trapped either in the (bcc) or the (hcp) phases [29]
in the low magnetic field limit. The ratio involving the ma-
trix elements M(n′, n) is evaluated in the Appendix, us-
ing the approximation scheme sketched above. Its absolute
value is found to lie close to unity. Let us quote now the
final result given by our semi-empirical method6 described
in the Appendix: |(A‖ − A⊥)/(A‖ + A⊥)| = 1.07× 10−3.
The uncertainty is believed not to exceed 20%.

For observing the electroweak linear Stark shift dis-
cussed in the present paper, it is important to work with
a uniaxial hexagonal crystal. Indeed, in a polycristalline
phase, where the individual crystals are oriented totally
at random, the average value of the pseudoscalar P taken
over the isotropic distribution of n̂ is expected to be sup-
pressed and thus is the Stark shift computed in the pre-
vious section. Although trapping of cesium atoms has not
yet been achieved in a monocrystalline hexagonal phase,
the prospect does not look infeasible [32] and a determina-
tion of the magnitude of the hyperfine anisotropy appears
to be the first step to be achieved. Using equation (34)
and |(A‖ − A⊥)/(A‖ + A⊥)| = 1.07× 10−3, we find that
the effective P -odd T -even electric dipole moment of the
trapped cesium atoms associated with the nuclear anapole
moment reaches 2.96 × 10−16|e|a0. For comparison, it is

6 This method can be seen as a generalization of that used
in Section 1.2 to evaluate the static dipole starting from the
empirical knowledge of the transition dipole.

interesting to note that this is about three times as large
as the Cs EDM limit (Eq. (20)) to be measured on un-
perturbed Cs atoms for improving our present knowledge
about a possible P -odd T -odd EDM of the electron.

4 Breaking the free atom symmetry
by application of a nonresonant radiation field

In this last section we want just to mention another possi-
bility for breaking the atomic Hamiltonian rotation sym-
metry by other means than static uniform electric and
magnetic fields. We have in mind the application of a
strong nonresonant radiation field which generates an
anisotropic electron gyromagnetic ratio. In the presence of
an external magnetic field B it has been shown [33] that
the effect of the nonresonant radiation field can be de-
scribed by the introduction of an effective magnetic field:

B′ =
(
g⊥B + (g‖ − g⊥)(n̂ ·B)n̂

)
/
√

(g2
‖ + g2

⊥),

where n̂ defines the direction of polarization of the ra-
diation field, g⊥ = gF and g‖ = gFJ0(ω1/ω), J0 is the
zero-order Bessel function, and ω1 is the Rabi angular
frequency associated with the radiation field. The above
formula suggests the existence of a uniaxial symmetry,
but it is valid only within an atomic hyperfine multiplet.
It is clear that the “dressing” by a nonresonant radia-
tion field offers new possibilities for placing the atoms
in a quadrupolar environment. However, it is important
to bear in mind that at least two stringent requirements
must be satisfied if one wants to detect an electroweak
Stark shift in the ground state. First, the uniaxial pertur-
bation has to mix the two hyperfine substates, otherwise
the matrix element of Hst

pv cancels. Second, it is imperative
to avoid a broadening of the transition lines for allowing
precise frequency measurements. We are currently investi-
gating how to achieve the proper conditions in a realistic
way.

Conclusion

This paper investigates a way to get around the well-
known no-go theorem: no linear Stark shift can be observed
in a stationary atomic state unless T reversal invariance
is broken.

The perturbation of an atom by the nuclear spin-
dependent parity-odd potential generated by the nuclear
anapole moment leads to a static electric dipole moment
dIs∧ I, which clearly is T -even. However, if one considers
an atom placed in arbitrarily oriented electric and mag-
netic uniform static fields B0 and E0, the quantum aver-
age E0·〈s∧I〉 is found to vanish. This can be understood by
noting that s∧ I ·E0 is odd under the quantum symmetry
transformation Θ defined as the product of time reversal
T by a space rotation of π about an axis normal to a plane
parallel to the fields B0, E0, while the atomic Hamiltonian
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stays even. Our strategy to obtain a linear Stark shift is
to break the Θ symmetry while keeping T invariance.

As a possible practical realization of such a situation,
we have studied the case of ground state Cs atoms trapped
in the hexagonal (hcp) phase of solid 4He, which has been
recently the subject of detailed spectroscopic studies [29].
In a monocrystal, the required breaking of space rotation
is provided by the uniaxial crystal field. As a result of
the deformation of the atomic spatial wave function, the
hyperfine interaction acquires an anisotropic part, which
plays an essential role in the determination of the size of
the linear Stark shift. We have performed a numerical es-
timation of the hyperfine anisotropy, believed to be accu-
rate to the 20% level, using a semi-empirical method. We
use as an input the recent experimental measurement of
the E2 amplitude of the 6S1/2 → 7S1/2 transition induced
in cesium by the hyperfine interaction. We arrive in this
way at a numerical evaluation of the linear Stark shift in-
duced by the nuclear anapole moment: the expected effect
is found to be about three times the experimental upper
limit to be set on the T -odd Stark shift of free Cs atoms
for improving the present limit on the electron EDM.

Besides the obvious remark that the T -even Stark shift
studied here could be a possible source of systematic un-
certainty in EDM experiments designed to reach unprece-
dented sensitivity [23,34–36], we believe that there are
strong physical motivations for measuring the Stark shift
itself. First, it would lead to a direct measurement of the
nuclear anapole moment in absence of any contribution
coming from the dominant PV potential due to the weak
nuclear charge. It would also provide an evidence for a
truly static manifestation of the electroweak interaction,
something which is still lacking. Second, this experiment
would rely on the measurement of frequency shifts rather
than transition amplitudes. While transition probabili-
ties are difficult to measure very accurately, high preci-
sion measurements of frequency shifts have already been
achieved.

We thank Ph. Jacquier for continuous interest in the subject
of this work and his encouragements. We acknowledge many
stimulating discussions with A. Weis and S. Kanorsky. We are
grateful to M. Plimmer and J. Guéna for careful reading of the
manuscript. This work has been supported by INTAS (96-334).

Appendix: Semi-empirical calculation
of the hyperfine anisotropy of Cs atoms
trapped inside a 4He hexagonal matrix

In this appendix we present our evaluation of the hyperfine
structure anisotropy (A‖−A⊥)/(A‖+A⊥) resulting from
the matrix induced bubble deformation of quadrupolar
symmetry, a quantity frequently referred to in this paper.

A.1 Two processes induced by hyperfine mixing

Our approach is based on the fact that hyperfine mixing
plays quite similar roles in two different processes. The

first process concerns the Cs 6S→ 7S quadrupolar transi-
tion amplitude in zero electric field while the second pro-
cess deals with the parameter (A‖ −A⊥)/(A‖ +A⊥).

We start by rewriting the standard mixed M1 − E2

transition operator in atomic units:

TM1+E2 = (ε ∧ k) ·M
µB
− i

1
2
∆E(ρ · ε)(ρ · k), (A.1)

where ρ is the electron coordinate in Bohr radius unit
and ∆E is the transition energy expressed in Rydberg
unit7. We are first going to study the perturbation effect
on TM1+E2 caused by the hyperfine interaction Hhf . This
phenomenon has been observed experimentally in the for-
bidden 6S1/2 → 7S1/2 transition. It provides a useful cali-
bration amplitude in cesium parity violation experiments
[2,3]. To analyze the experimental results, it was found
convenient, to introduce the effective transition operator
Thf acting upon the tensor products of the electron spin
and nuclear spin states:

Thf = i a2(n′, n)(s ∧ I) · (ε ∧ k)

+ i a3(n′, n)((s · k)(I · ε) + (s · ε)(I · k)). (A.2)

The second physical process to be analyzed in this section
is not at first sight closely connected but happens to be
described by the same formalism. This will allow us to
establish a very useful connection between measurements
coming from rather different experimental situations. Re-
cently optical pumping has been observed with cesium
atoms trapped inside an hexagonal matrix of solid helium
[29]. Among the new effects to be expected, we have seen
earlier in this paper that the existence of an anisotropic
hyperfine structure opens the possibility of observing a lin-
ear Stark shift induced by the nuclear anapole moment, an
effect which cannot exist for an atom in a spherically sym-
metric environment. It is known that in the bubble enclos-
ing the cesium atom there is a small overlap between the
cesium and the helium orbitals [26]. As a consequence, the
axially symmetric crystal potential inside the bubble can
be well approximated by a regular solution of the Laplace
equation:

Hb(n) = λb

(
e2

2a0

)(
(ρ · n)2 − 1

3
ρ2

)
. (A.3)

The perturbation of the hyperfine interaction by the bub-
ble quadrupole potential Hb(n) induces an anisotropic hy-
perfine structure for cesium nS1/2 states. This is described
by the effective Hamiltonian:

Hanis
hf = (A‖ −A⊥)

(
(s · n)(I · n)− 1

3
s · I

)
. (A.4)

We present now the basic formulas which allow the com-
putation of the parameters relevant for the two physical

7 The phase difference, π/2, between the two amplitudes
expresses the fact that the magnetic moment M and the
quadrupole operator behave differently under time reflection:
the first is odd, while the second is even.
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problems in hand. They will be given in such a way as
to exhibit their close analogy. We have chosen to use the
Dirac equation formalism. Besides the fact that formu-
las are more compact, it is well-known that relativistic
corrections play an important role in cesium hyperfine
structure computation. Neglecting the contribution of the
quadrupole nuclear moment of the Cs nucleus8, the hy-
perfine Hamiltonian is written as:

Hhf = I ·A, (A.5)

A = Chf
α ∧ ρ
ρ3

+ δA(1)(ρ,ρ′) + ... (A.6)

The first term gives the hyperfine interaction of the va-
lence electron treated as a Dirac particle; the second rep-
resents the non-local modification of the hyperfine interac-
tion induced by the excitation of core electron-hole pairs
to lowest order and the dots stand for higher order con-
tributions9. It has been shown in reference [30] that the
off-diagonal matrix element〈

n′′D3/2

∣∣∣∣α ∧ ρρ3

∣∣∣∣nS1/2

〉
is strongly suppressed by an approximate selection rule
which does not apply to the many-body non local opera-
tor δA(1)(ρ,ρ ′). An evaluation of the latter contribution
led to a semi-quantative agreement with the experimen-
tal measurements of the ratio a3(7, 6)/a2(7, 6), while the
single particle result is too small by about two orders of
magnitude.

To obtain an estimate of the ratio (A‖−A⊥)/a3(7, 6) it
is convenient to introduce the Cartesian tensor operator
Ti1i2i3(E). This object appears naturally in the lowest-
order perturbation expressions for the quantities of inter-
est:

Ti1i2i3(E) = Ai1G+
3/2(E)

(
ρi2ρi3 −

1
3
δi2,i3ρ

2

)
, (A.7)

where the indices i1, i2, i3 take any value between 1 and 3.
The scalar operator G+

3/2(E) is the atomic Green func-
tion operator restricted to the subspace of D3/2 config-
urations (total atomic angular momentum J = 3/2 and
positive parity). We now proceed to isolate in Ti1i2i3(E)
the part transforming as a vector; this is the only part to
survive after the operator is sandwiched between the pro-
jectors P (n′S1/2) and P (nS1/2). This operation is achieved
by a decomposition of Ti1i2i3(E) into a traceless tensor
T̄i1i2i3(E) and a remainder [39]:

Ti1i2i3(E) = T̄i1i2i3(E) +
3
10

(δi1,i2Tααi3(E)

+δi1,i3Tααi2(E)) − 2
10
δi2,i3Tααi1(E), (A.8)

8 As shown in reference [31], the quadrupole contribution
for 133Cs plays a negligible role in the effects discussed in this
appendix.

9 An explicit construction of δA(1)(�,� ′) together with a
resummation of an infinite set of higher order terms, within
the many body field theory formalism, is given in reference
[37]. See also [38] for more advanced analysis.

where we have used the fact that Tααi = Tαiα and
Tiαα = 0. It is a simple matter to verify from the above
equation that we have indeed T̄ααi3 = T̄αi2α = T̄i1αα = 0.
The fully symmetric part of the traceless tensor T̄ Si1i2i3(E)
is easily identified with an octupole spherical tensor hav-
ing seven independent components. By a simple counting
argument, the left over term is seen to have five compo-
nents; it is to be identified with the quadrupole tensor
which appears in the full decomposition of Ti1i2i3(E) into
irreducible representations of the rotation group O(3). Let
us have a look at the vector operator, V, the components
of which appear in the right hand side of equation (A.8):

V = (AG+
3/2(E) · ρ)ρ− 1

3
AG+

3/2(E)ρ2.

The second term in the above expression does not con-
tribute when it acts upon an nS1/2 state so, we are led for
our purpose to introduce the vector operator T (n′, n)

T (n′, n) =
3
10
P (n′S1/2)

(
(AG+

3/2(Ei) · ρ)ρ

+ (h.c., Ef → Ei)
)
P (nS1/2)

= γ(n′, n)s, (A.9)

where Ef and Ei are respectively the binding energies of
the n′S1/2 and nS1/2 atomic states. The last line of the
above equation follows directly from the Wigner-Eckart
theorem applied to a vector operator.

In order to calculate a3(n′, n) we have to perform the
contraction of Ii1εi2ki3 with the tensor:

Fi1i2i3 = P (n′S1/2)(Ti1i2i3(Ef)+(h.c., Ef→Ei))P (nS1/2).

Using equations (A.8, A.9), Fi1i2i3 can be cast into the
simple form:

Fi1i2i3 = γ(n′, n)
(
δi1,i2si3 + δi1,i3si2 −

2
3
δi2,i3si1

)
.

The required index contraction with the tensor Ii1εi2ki3 is
now easily performed and one obtains directly a3(n′, n),
up to a prefactor whose value is found by identification
with equation (A.1):

a3(n′, n) = −1
2
∆Eγ(n′, n). (A.10)

To calculate the hyperfine anisotropy A‖ − A⊥, we fol-
low the same lines but this time the contraction involves
the tensor Ii1

(
ni2ni3 − 1

3δi2,i3
)
, the prefactor is fixed by

comparison with equation (A.3) and the exchange i2 ↔ i3
leads to two identical contributions. Hence,

A‖ −A⊥ = 2λb

(
e2

2a0

)
γ(n, n) (A.11)

= −
(
e2

2a0

)
4λb
∆E

γ(n, n)
γ(n′, n)

a3(n′, n). (A.12)

The expression (A.12) looks to us a good starting point
for numerical evaluation of A‖−A⊥: besides the fact that
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several sources of uncertainties in the evaluation of γ(n′, n)
are eliminated in the ratio γ(n, n)/γ(n′, n), it lends itself
to the use of empirical information. One may note, here,
a certain similarity with equation (17) of Section 1.2 used
for the evaluation of the permanent dipole, dI .

A.2 Numerical evaluation

We proceed now to a numerical evaluation of A‖ −A⊥ in
three steps, starting from formula (A.12).

The numerical value of the 6S1/2 → 7S1/2 quadrupole
amplitude a3(7, 6) is readily obtained from measurements
[2,31] of the ratio

a3(7, 6)/a2(7, 6) = E2/M
hf
1 = (5.3± 0.3)× 10−2,

combined with a precise theoretical evalution of the
magnetic dipole amplitude10 a2(7, 6) = −Mhf

1 /2µB =
(0.4037± 0.0004)× 10−5. We obtain finally:

a3(7, 6) = (2.14± 0.12)× 10−7. (A.13)

The second step is the numerical estimate of the ratio
γ(6, 6)/γ(7, 6). This is more delicate and requires an as-
sumption which has been shown to work in similar situ-
ations. To begin with, we have addressed the question11

of the origin and size of the variations of the off-diagonal
matrix elements 〈nS1/2|Hhf |n′′D3/2〉 with the radial quan-
tum numbers n and n′′. It is of interest to remind that
a very precise answer to this question has been already
obtained in the case of cesium single particle matrix ele-
ments 〈nLJ |Hsp

hf |n′LJ〉 with L = 0 or 1 and with n and n′
referring to the radial quantum numbers of any pair of
valence states. For simplicity, we are going to express the
answer within a non-relativistic formalism, but it should
be borne in mind that all of what is said holds true within
a relativistic framework. It is convenient to introduce the
notion of overline matrix elements such as those computed
with radial wave functions Rnlj(ρ) which have a starting
coefficient at the origin equal to unity instead of a unit
norm12. More explicitly we can write:

〈nLJ |Hsp
hf |n′LJ〉 =

〈nLJ |Hsp
hf |n′LJ〉

AnljAn′lj
, (A.14)

where Anlj = limρ→0 ρ
−lRnlj(ρ) is the starting coefficient

of the space normalized wave function. (In the relativis-
tic case the above condition is replaced by energy inde-
pendent boundary conditions imposed on the Dirac radial
10 The theoretical method used to get Mhf

1 is based upon the
factorization rule: 〈6S|Hhf |7S〉 =

p
〈6S|Hhf |6S〉〈7S|Hhf |7S〉.

This rule was first established with an accuracy of a few parts
in 103 in reference [30]. It has been confirmed by a direct many-
body relativistic computation [41] of 〈6S|Hhf |7S〉, accurate to
the 1% level. More recently the validity of the rule has been
pushed to the level of a fraction of 10−3 [42].
11 Arguments similar to those given below and in references
[30,40] are developed in [42].
12 The wave function Rnlj(ρ) is known to be an analytic func-
tion of the energy. This property is the starting point of the
quantum defect theory.

wave functions at the nuclear radius). It was found in ref-
erences [30,40] that the overlined matrix elements are in-
dependent of the valence orbital radial quantum numbers
n and n′ to better than 10−4 for S1/2 states and better
than 10−3 for P1/2 states. This result is understood by
noting that, in the domain of the ρ values relevant for
the evaluation of the matrix elements of (α ∧ ρ)/ρ3 for
S1/2 and P1/2 states, the potential energy is larger than
valence binding energies by more than three orders of mag-
nitude. This implies that, in this domain, the overlined ra-
dial wave functions have no dependence upon the binding
energy or equivalently upon the radial quantum numbers
of the valence orbitals.

The above argument has to be reconsidered for the
lowest order many body correction involving the ma-
trix element of the non local operator: δA(1)(ρ,ρ ′). The
relevant domain of ρ values is now determined by the
“radii” of the core outer orbitals involved in the com-
putation, which in the case of S1/2 and P1/2 matrix el-
ements are 5s, 5p, while in the case of the off-diagonal
matrix element 〈nS1/2|δA(1)|n′D3/2〉 only 5p is relevant.
We measure the variation of the overlined matrix elements
〈nLJ |Hmb

hf |n′L′J′〉 with the valence state binding energies
EnLJ by the parameters δLJ defined as their logarithmic
derivative with respect to EnLJ , (here Hmb

hf stands for
the many-body modification to the hyperfine interaction).
From results of references [30,40], we can infer the rela-
tive variation of 〈nL1/2|δA(1)|n′L1/2〉 for L = 0, 1 and we
arrive to the values δ(1)

S1/2
= −0.12 and δ

(1)
P1/2

= −0.30.

The fact that −δ(1)
P1/2

is about three times larger than

−δ(1)
S1/2

is coming from the fact that P state binding en-
ergies have to be compared with the potential energy
minus the centrifugal energy. Let us, now, consider the
more difficult case of the S–D off-diagonal matrix ele-
ments 〈n′S1/2|δA(1)|n′′D3/2〉. The corresponding param-
eter δ(1)

S1/2
is expected to be somewhat larger in absolute

value, due to the fact that the relevant 5p orbital is less
tightly bound than the 5s orbital which gives the dom-
inant contribution to the S1/2 diagonal matrix element.
The relative variation versus the D3/2 energy is expected
to be on the order of few units, since the centrifugal bar-
rier is three times higher than in the case of P states. This
expectation is borne out by a preliminary estimate which
gives δ(1)

D3/2
∼ −3.

We proceed now to a numerical evaluation of the ra-
tio ranis = γ(6, 6)/γ(7, 6), leaving, for the moment, δS1/2

and δD3/2 as free parameters. As an intermediate step, we
compute the quantities M(n′, n), written as sums over the
intermediate n′′D3/2 states:

M(n′, n) =
∑
n′′

〈n′S1/2|Hhf |n′′D3/2〉〈n′′D3/2|ρ2|n S1/2〉
En′S1/2 − En′′D3/2

·

(A.15)
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The ratio ranis is given in terms of M(n′, n) by the follow-
ing formula:

ranis = γ(6, 6)/γ(7, 6) =
2M(6, 6)

M(7, 6) +M(6, 7)
· (A.16)

An explicit numerical computation of ranis has been per-
formed according to the following procedure. First, any
binding energy independent factor appearing in M(n′, n)
is dropped since it disappears in the ratio. This is indi-
cated below by the symbol ∝. The sum

∑
n′′ appearing

in M(n′, n) is limited to 5 ≤ n′′ ≤ 8. The set of the
quadrupole matrix element 〈n′′D3/2|ρ2|nS1/2〉 were ob-
tained by a relativistic version of the Norcross model. In
order to test the sensitivity of the result to quadrupole
amplitudes, we have also used a set calculated by an ex-
tension of the Bates-Damgaard method. The energy de-
nominators are taken from experiment. The hyperfine ma-
trix elements 〈n′S1/2|Hhf |n′′D3/2〉, to second order in the
binding energies are, given by the following formulas:

〈n′S1/2|Hhf |n′′D3/2〉 ∝ An′′D3/2An′S1/2

×
(
1+δS1/2En′S1/2 +δD3/2En′′D3/2

)
,

(A.17)

AnLJ ∝ (−EnLJ )
3
4 . (A.18)

In formula (A.17), we have dropped, according to the
above prescription, the zero energy limit of the overlined
matrix element 〈n′S1/2|Hhf |n′′D3/2〉. Equation (A.18) fol-
lows from a result obtained in [16], where the Fermi-Segré
formula was extended to arbitrary orbital angular momen-
tum states. For simplicity, we have ignored a factor involv-
ing the derivative of the quantum defects, which in the
present context would introduce few percent corrections.

We now have all the elements needed to calculate the
sought after ratio:

ranis =
γ(6, 6)
γ(7, 6)

= −0.8173− 0.0255δD3/2 + 0.1456δS1/2.

(A.19)

The negative sign of ranis can be traced back to the fact
that the 7S1/2 level lies just in between 5D3/2 and 6D3/2

levels. If we adopt the rough estimate given above: a few
tens of % for −δS1/2 and a few units for −δD3/2 , the first-
order energy correction remains well below the 10% level,
due in part to a cancellation between the two correcting
terms. To reduce the absolute value of ranis by more than
10% would require unrealistic values of −δD3/2 so we be-
lieve the estimate of ranis = −0.82±0.10 to be reasonably
safe13.

The final step in our evaluation of the hfs anisotropy
is devoted to the empirical determination of the coupling
constant λb appearing in front of the crystal electronic
potential. As experimental input we are going to use the
13 The validity of the procedure leading to this estimate has
been checked, to the 10% level, upon a significative subset of
the many-body Feynman diagrams contributing to γ(n′, n).

hyperfine energy shift which is observed for trapped ce-
sium atoms, when one passes from the cubic to the hexag-
onal phase. This shift is attributed to the effect of the
anisotropic bubble potential Hb(n). We shall ignore, for
the moment, the possible contribution of the anisotropic
hyperfine interaction Hanis

hf (Eq. (A.4)) and assume that
the shift is essentially due to the renormalization of the
6S1/2 component of the atomic wave function by the ad-
mixtures αnDJ of the nDJ states. The corresponding vari-
ation of the hyperfine splitting δW is then given by:

δW

W
= −

∑
n,J

|αnDJ |
2 = −λ2

bJSD, (A.20)

where we have isolated λ2
b by introducing the purely

atomic quantity JSD. Let us write down the explicit ex-
pression of JSD, neglecting spin-orbit coupling and assum-
ing that n lies along the quantization axis:

JSD =
∑
n

|〈6S|(cos2 θ − 1/3)ρ2|nD〉/(E6S − EnD)|2.

(A.21)

We limit the sum to n values ranging from 5 to 8. With
the same radial quadrupole matrix elements as before, we
obtain the numerical value: JSD = 9512. Using the empir-
ical number given in reference [29],

√
−δW/W = 0.035,

we arrive at the following absolute value of the coupling
constant λb (in Ry):

|λb| =
√
−δW
JSDW

= 0.000359. (A.22)

It should be pointed out that if the crystal axis n is not
aligned along the quantization axis, one obtains values
of JSD smaller than the one quoted above, so the value
of |λb| should be considered, strictly speaking, as a lower
bound. At last, we have in hand all the ingredients needed
to perform a numerical evaluation of |A‖ − A⊥| from the
formula (A.12) since ∆E = 0.169 is taken directly from
experiment:

|A‖ −A⊥| =
4|λb|
∆E
|γ(6, 6)|
|γ(7, 6)| |a3(7, 6)| Rydberg (MHz)

= 4.9 MHz (A.23)

= 1.07× 10−3 × (|A‖ +A⊥|). (A.24)

As a final topic, we should discuss the effect of the
anisotropic hyperfine interaction itself on the the empirical
splitting δW , since this could modify the value of |λb| and
so play a role in the assessment of the uncertainty affect-
ing the result given by equation (A.24). Due to this effect,
the constant λb is no longer given by equation (A.22) but
rather by a second order equation where the linear term
is associated with the anisotropic hyperfine interaction. It
is convenient to introduce the variable x = λb/λ

0
b with

λ0
b =

√
−δW/(JSDW ). The equation giving λb takes then

the simple form: x2 − 2bx− 1 = 0, where the coefficient b
is given by the following formula:

b =
(A‖ −A⊥)(0)

A‖ +A⊥

W

δW

∆F 〈 szIz − 1
3s · I 〉

2I + 1
·
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The superscript (0) indicates that the hf anisotropy is
given, up to a well defined sign, by equation (A.24). The
symbol ∆F means that one should take the difference be-
tween the two hyperfine states of the quantum average
over which it is applied. To obtain an over-estimate of b
we have assumed that optical pumping works at its max-
imum efficiency so that the microwave transition takes
place between the hyperfine levels (4, 4) and (3, 3). In this
case we obtain b = 0.20 and the two possible solutions for
λb are:

λ
(±)
b = ±3.6× 10−4(1± 0.2).

The actual experimental situation is expected to lie far
from the extreme case considered here, so the difference
between the two absolute values is certainly smaller than
the upper limit given by the above calculation.

In conclusion, including all sources of uncertainties,
we consider our evaluation of equation (A.24), |(A‖ −
A⊥)/(A‖ + A⊥)| = 1.07× 10−3, as reliable within uncer-
tainty limits of about 20%. However, if, during hyperfine
shift measurements n is not aligned along the quantiza-
tion axis, the central value of λb, and therefore that of
(A‖ −A⊥)/(A‖ +A⊥), may be pushed upwards.
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